

Part 2 – 23 July 2025

Achieving High Availability (HA) and Security of Modern applications using MariaDB Enterprise

Kanthimathi Kailasanathan (Kanthi)

Senior Solutions Engineer **MariaDB** Corporation

About Speaker

Kanthi

Senior Solutions Engineer

kanthimathi.kailasanathan@mariadb.com

https://www.linkedin.com/in/kanthimathi-kailasanathan/

Celebrating 15 Years of MariaDB !!

The first version of MariaDB, 5.1.38, was released on 29th of October 2009!

We have come a long way since then!

More information at

https://monty-says.blogspot.com/2024/10/celebrating-15-years-of-mariadb.html

About MariaDB

Created by the original developers of MySQL, MariaDB provides a powerful, open-source core database for enterprises. Now the default in the majority of Linux distributions, it gives businesses the strategic freedom to break from proprietary databases and build modern, scalable applications for the future.

Market Leadership

75%

Of Fortune 500 companies use MariaDB

1B+

Docker Hub downloads

2.5B+

Reach via Linux distros

700+ Customers Globally

Amdocs

Deutsche Bank

Development Bank of Singapore (DBS)

Nokia

Samsung

SelectQuote

ServiceNow

Virgin Media O2

200+ Employees

Proven leadership team

World class relational database engineering team, including the original core MySQL team

Dual headquartered

- Europe: Dublin, Ireland
- USA: Silicon Valley, California

200K+

Open source contributions

Introducing Crest Infosolutions

- ✓ Founded in 2012 in Singapore
- Serving customers globally with presence in Singapore, Malaysia, Indonesia, USA and Netherlands
- ✓ MariaDB distributor and partner since 2015.
- ✓ Strong MariaDB consulting team with experience in setting-up and securing MariaDB at scale.
- Migration team to support customers in their database migration journey from Oracle, MS SQL, MySQL or PostgreSQL to MariaDB.

The Complete Enterprise-Grade Platform

Delivering Performance, Scalability, Availability, and Security

MariaDB is the default over MySQL on Linux distributions

75% of the Fortune 500 uses MariaDB

MariaDB Enterprise Platform is your complete database solution

Enterprise Features

Enhanced Data Security

End to end Encryption

High Availability

Improved Auditing

Pluggable Storage Engines

- MariaDB supports multiple storage engines for diverse needs
- InnoDB provides ACID compliance and data integrity features
- ColumnStore offers columnar storage for analytical workloads
- MyRocks engine is designed for write-intensive applications
- Aria engine is ideal for temporary tables and internal processes

MaxScale

Intelligent Load Balancing

Comprehensive Compliance Needs

Database Ease of Use

High Availability and Data Replication Options

Synchronous and Asynchronous Replication using Galera

Creating a MariaDB Galera Cluster

Identify the IP for Each Container

The IP will be used to configure the MariaDB Cluster

\$ ifconfig | grep inet

```
@mdb node1:/104x14
           172.17.0.2 netmask 255.255.0.0 broadcast 172.17.255.255
       inet 127.0.0.1 netmask 255.0.0.0
E GaleraNoxie
                                                @mdb node2:/104x14
       inet 172.17.0.3 netmask 255.255.0.0 broadcast 172.17.255.255
       inet 127.0.0.1 netmask 255.0.0.0
                                                @mdb node3:/104x13
mariadb@mariadb MDB HA]$ docker exec -it mdb node3 bash
        inet 172.17.0.4 netmask 255.255.0.0 broadcast 172.17.255.255
       Inet 127.0.0.1 netmask 255.0.0.0
```


Configure the MariaDB Cluster

Using an editor, make the following changes to the /etc/my.cnf.d/server.cnf file:

wsrep_on wsrep_provider wsrep_cluster_address binlog_format default_storage_engine innodb_autoinc_lock_mode

Note: use the IP addresses obtained in the previous step to set the wsrep_cluster_address parameter.

```
@mdb_node1:/104x14
   Galera related settings
 galeral
 Mandatory settings
wsrep on=ON
wsrep provider=/usr/lib64/galera/libgalera smm.so
wsrep cluster address=gcomm://172.17.0.2,172.17.0.3,172.17.0.4
default storage engine=InnoDB
innodb autoinc lock mode=2
# Allow server to accept connections on all interfaces.

    GaleraNode

                                                  @mdb_node2/104x14
   Galera-related settings
 galera]
 Mandatory settings
wsrep en=ON
wsrep provider=/usr/lib64/galera/libgalera smm.so
wsrep cluster address=gcomm://172.17.0.2,172.17.0.3,172.17.0.4
binlog format=row
default storage engine=InnoDB
 nnodb autoinc lock mode=2
 Allow server to accept connections on all interfaces.
                                                  @mdb node3:/ 104x13
  * Galera related settings
 galeral
 Mandatory settings
warep on=ON
wsrep provider=/usr/lib64/galera/libgalera smm.so
wsrep_cluster_address=qcomm://172.17.0.2,172.17.0.3,172.17.0.4
binlog format=row
default storage engine=InnoDB
 nnodb autoinc lock mode=2
# Allow server to accept connections on all interfaces.
```

Before Starting the Cluster

For each node in the cluster, check if the MariaDB server is running:

\$ systemctrl status mariadb.service.

If there are instances running, stop them before starting the cluster:

\$ systemctl stop mariadb.service

```
root@mdb mode1 /]# systematl status mariadb.service
 mariadb.service - MariaDB 10.3.12 database server
  Loaded: loaded (/usr/lib/systemd/system/mariadb.service; enabled; vendor preset: disabled)
 Drop-In: /etc/systemd/system/mariadb.service.d
          Umigrated-from-my.cnf-settings.conf
  Active: active (running) since Tue 2019-03-05 16:54:28 UTC: 1h 45min ago
    Docs: man:mysald(8)
          https://mariadb.com/kb/en/library/systemd/
 Process: 1141 ExecStartPost=/bin/sh -c systemctl unset-environment WSREP START POSITION (code=exited,
 Process: 263 ExecStartPre=/bin/sh -c | 1 -e /usr/bin/galera recovery | 66 VAR= || VAR= /usr/bin/gale
a recovery'; [ $? -eq 0 ] 66 systemctl set-environment WSREP START POSITION=SVAR || exit 1 (code=exi
ed, status=0/SUCCESS)
 Process: 217 ExecStartPre=/bin/sh -c systematl unset-environment WSREP START PDSITION (code=exited, start position)
                                                    ndb_node2:/104x14
 ootendb mode2 / [# systemett status mariadb.service
 mariadb.service - MariaDB 10.3.12 database server
  Loaded: loaded (/usr/lib/systemd/system/mariadb.scrvice; enabled; vendor preset: disabled)
 Drop-In: /etc/systemd/system/mariadb.service.d
          Lanigrated-from-my.cnf-settings.conf
  Active: active (running) since Tue 2019-03-05 16:54:40 UTC: 1h 45min ago
    Docs: man:mysald(8)
          https://mariadb.com/kb/en/library/systemd/
 Process: 1330 ExecStartPost=/bin/sh -c systematt unset-environment WSREP START POSITION (code=exited
 Process: 373 ExecStartPre=/bin/sh -c [ ] -e /usr/bin/galera recovery 1 && VAR= | | VAR= /usr/bin/gale
a recovery : [ $? -eq 0 ] && systemoti set-environment WSREP START POSITION SVAR || exit 1 (code exi
ed, status=0/SUCCESS)
 Process: 351 ExecStartPre=/bin/sh -c systematl unset-environment WSREP START PDSITION (code=exited,
root@mdb node3 / | # systemctl status mariadb.service
mariadb.service - MariaDB 10.3.12 database server
  Loaded: loaded (/usr/lib/systemd/system/mariadb.service; enabled; vendor preset: disabled)
 Drop-In: /etc/systemd/system/mariadb.service.d
          I-migrated-from-my.cnf-settings.conf
  Active: active (running) since Tue 2019-03-05 16:55:03 UTC: 1h 44min ago
   Docs: man:mysqld(8)
          https://mariadb.com/kb/en/library/systemd/
 Process: 2313 ExecStartPost=/bin/sh -c systemctl unset-environment WSREP START POSITION (code=exited.
status=0/SUCCESS)
Process: 417 ExecStartPre=/bin/sh -c | | -e /usr/bin/galera recovery | && VAR= | | VAR= "/usr/bin/gale
ra recovery': [ $7 -eq 0 ] && systemctl set-environment WSREP START POSITION=SVAR || exit 1 (code=exi
ed, status=0/SUCCESS)
```


Start the First Node ONLY

On node1 start the initial node of the cluster using the following command:

\$ galera_new_cluster

Validate the first node is running

\$ ps -ef | grep mysqld

Check Cluster Size

Use the mysql client from node1: \$ mariadb -u root

To check the cluster size execute the following command:

> show global status like 'wsrep_cluster_size';

The cluster size should be 1

OPTIONALLY to get further details about the clus execute:

> show global status like 'wsrep_cluster_%';

```
## GaleraNode

I row in set (0.001 sec)

MariaDB [(none)]> show global status like 'wsrep_cluster_%';

Variable_name | Value |

wsrep_cluster_conf_id | 1 |
 wsrep_cluster_size | 1 |
 wsrep_cluster_state_uuid | 5a74472a-3f77-1le9-a3f4-877290c109a5 |
 wsrep_cluster_status | Primary |
 wsrep_cluster_weight | 1 |

5 rows in set (0.002 sec)

MariaDB [(none)]>
```


Start Additional Nodes

For each additional node start the MariaDB service.

\$ systemctl start mariadb.service

Then check the new servers were added to the cluster:

> show global status like 'wsrep_cluster_size';

```
@mdb_node1:/104x16
 wsrep cluster state uuid
                             5a74472a-3f77-11e9-a3f4-877290c109a5
 wsrep cluster status
 wsrep cluster weight
MariaDB [(none)]> show global status like 'wsrep cluster size';
 wsrep cluster size | 3
MariaDB [(none)]>
                                                    @mdb node2:/104x13
root@ndb node2 /]# systemctl start mariadb.service
root@ndb node2 /]#
                                                    @mdio node3:/ 104x13
root@mdb node3 /]# systemctl start mariadb.service
root@mdb node3 /]#
```

Synchronous Replication

Create Users and Grant Privileges

On node 1 create a users and grant privileges. The DCL commands are replicated:

- > CREATE USER 'backupuser'@'localhost' IDENTIFIED BY 'letmein';
- > GRANT RELOAD, LOCK TABLES, REPLICATION CLIENT ON *.* TO 'backupuser'@'localhost';
- > CREATE USER 'labtest'@'172.17.0.%' IDENTIFIED BY 'letmein';
- > GRANT ALL ON *.* TO 'labtest'@'172.17.0.%';

On node 2 check the users have been replicated:

> select user, host from mysql.user;

```
III Gallera Node
                                                  @mdb node1:/104x16
Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.
MariaDB [inone)]> CREATE USER 'backupuser'9'localhost' IDENTIFIED BY 'letmein';
Query OK, 8 rows affected (8.805 sec)
MariaDB [[none]]> GRANT RELOAD, LOCK TABLES, REPLICATION CLIENT ON *.* TO 'backupuser'@'localhost';
Query OK, 0 rows affected (0.005 sec)
MariaDB [[none]]> CREATE USER 'labtest'@'172.17.0.5' IDENTIFIED BY 'letmein';
Ouery OK, 8 rows affected (0.005 sec)
MariaDB [(none)]> GRANT ALL ON *.* TO 'labtest'@'172.17.0.%':
Query OK, 0 rows affected (0.004 sec)
MariaDB [(none)]> select user, host from mysql.user
GaleraNode
                                                  @mdb node2:/104x13
MariaDB [(none)]> select user, host from mysgl.user;
              host
              127.8.8.1
  root
  labtest
              172.17.0.%
  root
               e5ec9f613d48
  root
               e5ec9f613d40
               localhost
 backupuser
              localhost
               localhost
                                                   @mdb node3:/104x13
 root@mdb node3 / W systemctl start mariadb.service
 root@ndb node3 /]# |
```

Replicate DDL and DML Statements

From any node in the cluster, create and insert values to a table (note there are no tables in the test database):

- > CREATE TABLE seals (a1 INT UNSIGNED KEY);
- > INSERT INTO seals VALUES (1), (2), (3);

Then select all rows from the table on different nodes:

> SELECT * FROM seals;

DML and DDL commands have been synchronously replicated

```
@mdb node1 / 104x16
 (ariaDB [(none)]> use test:
Database changed
MariaDB [test]> show tables:
Empty set (0.000 sec)
 MariaDB [test]> SELECT * FROM seals:
  rows in set (0.002 sec)
MariaDB [test]>
                                                  @mdb_node2:/ 104x13
 lariaDB [(none)]> use test;
Database changed
MariaDB [test]> show tables:
Empty set (0.000 sec)
MariaDB [test]> CREATE TABLE seals (al INT UNSIGNED KEY);
Query OK, 6 rows affected (0.023 sec)
MariaDB [test]> INSERT INTO seals VALUES (1), (2), (3);
Query OK, 3 rows affected (0.033 sec)
Records: 3 Duplicates: 0 Warnings: 0
 MariaDB test >
                                                   @mdb node3:/104x13
GaleraNode
Empty set (0.000 sec)
 MariaDB [test]> SELECT * FROM seals;
 al
  rows in set (0.001 sec)
MariaDB [test]>
```

Information_Schema for Galeara

Check which replication provider is used:

> SELECT @@wsrep_provider;

Get details about replication members

> SELECT * FROM INFORMATION_SCHEMA.WSREP_MEMBERSHIP;

```
GaleraNode
                                                  @mdb node1:/ 104x21
MariaDB [(none)]> INSTALL SONAME 'wsrep info';
Query OK, 0 rows affected (0.017 sec)
MariaDB [(none)]> SELECT @@wsrep provider;
  @@wsrep provider
  /usr/lib64/galera/libgalera smm.so
 row in set (0.000 sec)
MariaDB [(none)]> SELECT * FROM INFORMATION SCHEMA.WSREP MEMBERSHIP;
  INDEX | UUID
         5a70ddac-3f77-11e9-803f-5bc779d878e2 | mdb node1 |
                                                             172.17.0.2:3306
          703bf631-3f7f-11e9-89c6-bfeaab801bb0
                                                 mdb node2
                                                             172.17.0.3:3306
          7a3c7ec0-3f7f-11e9-af64-5617811c5d88
                                                mdb node3 |
                                                            172.17.0.4:3306
3 rows in set (0.003 sec)
```


MariaDB Enterprise Cluster, Powered By Galera

An active-active, multi-master synchronous replication solution

MariaDB Galera Cluster, an open source active-active, multimaster synchronous replication solution that provides parallel replication and data consistency across all nodes.

- High Availability for InnoDB (ACID compliant)
- All nodes are equal, read and writes to any node
- Asynchronous Replication between Clusters supported
- Typically an odd number of nodes to avoid split brain
- Automatically manages the identification and removal of failed nodes as well as rejoining new or repaired nodes

Asynchronous Replication

Basic HA Architecture

- Only one MaxScale
- Single point of failure
- MariaDB Backend HA

... and an Ideal data layer?

jdbc:mariadb:sequential://10.0.6.1,10.0.6.2,10.0.6.3,10.0.6.4/database

If not, a typical recommended HA Architecture

Demo time!

MaxScale Auto Failover

MaxScale Cooperative Monitoring

Why do we need Cooperative Monitoring?

When multiple MaxScale instances are used in a highly available deployment,
MariaDB Monitor needs to ensure that only one MaxScale instance performs

automatic failover operations at a given time. It does this by using cooperative locks on
the back-end servers.

Two important parameters to achieve this...

Majority_of_running

- MaxScale node that has the maximum number of locks will become the Primary
- In this mode, the total number of "Running" MariaDB nodes are considered excluding the nodes that are down.

Majority_of_all

- In this mode, all the nodes are considered
- MaxScale node that has the maximum number of locks will become the Primary

• How to calculate the locks?

- O Round the result down: n_servers/2 + 1
- Majority_of_running "n_servers" is the total number alive servers
- Majority_of_all "n_servers" is the total number of MariaDB servers

Majority_of_running

Majority_of_all

Comprehensive Security

END-TO-END ENCRYPTION

Demo time!

Transparent Data Encryption (TDE)

MariaDB Audit Plugins - Key Features

User Activity Logging

Logs user logins, logouts, and any SQL queries executed by users. This logging helps in tracking down unauthorized access and potential misuse.

Flexible Event Filtering

Customize the logging of specific event types, such as CONNECT, QUERY and TABLE (for table-specific actions). selecting only relevant event types and focusing on critical activities.

Compliance Support

GDPR, HIPAA, PCI DSS Compliant. The audit plugin provides a detailed and timestamped record of activities, which can be crucial during audits.

Json Log Output

The latest plugin version supports Json logging making it easier to parse and analyze logs with modern log management tools like Elastic Stack or Splunk.

Log Management System Integration

Administrators can review database activities alongside logs from other infrastructure, improving the ability to spot suspicious behavior.

Audit Log
Destinations

Logging to a file or System Log

Log Rotation

MariaDB's audit plugin supports log rotation, allowing you to manage log file sizes and retain important audit data.

Authentication and Authorization in MariaDB

Authentication	PAM	Unix Socket	MySQL Native Password	GSSAPI, ED25591, PARSEC, SHA-256, Named Pipes
Authorization	RBAC	Principle of Least Privilege	Host Specific Access	Regular Audits
Benefits	Simplified Administration	Reduced Risk	Improved Compliance	Better scalability

Innovating in Motion

Need Assessment of your MySQL / MariaDB environment, or Looking for a PoC?

NEXT – Part 3

Ensuring Business Continuity
and Compliance with Backup,
Restore and Disaster Recovery
Strategies with MariaDB Enterprise

21 August 2025

02:00 pm MYT

Kanthimathi Kailasanathan Database Consultant, Sales Engineering at MariaDB

UPCOMING WEBINARS

25 Sep I 2pm

Avoiding Vendor lock-in and Lowering cost for Oracle dependent applications with MariaDB Enterprise

23 Oct | 2pm

Application Modernisation using GenAl capabilities with MariaDB Enterprise Vector Database

REGISTER NOW

Email: info@crestsolution.com

Web: www.crestsolution.com

Thank You

